Menu
in ,

Cómo reparar la fuente de tu monitor

Las fuentes de alimentación de todos los monitores son las del tipo switching o conmutadas. Su utilización se ha multiplicado y estandarizado debido al alto rendimiento de energía que poseen respecto a las antiguas fuentes de alimentación lineales, no conmutadas, que incluían un pesado e ineficaz transformador. Ahora el diseño se resuelve en un circuito integrado, un pequeño transformador de núcleo de ferrita y unos pocos componentes accesorios. Baja disipación de calor, rendimientos elevados, ahorro de energía y muchas ventajas más que han hecho que se incluyan en Monitores de Ordenadores, Notebooks, DVD, TV, y cientos de aplicaciones más. Ven con nosotros. Descúbrelas y aprende a repararlas.

La multiplicidad de aplicaciones que las fuentes switching (SMPS) poseen en la actualidad y todos los halagos vertidos en el sumario no significan que sean irrompibles o indestructibles. A pesar de poseer una gran cantidad de elementos de protección contra innumerables fallos, no dejan de romperse, y allí estarás tú, con nuestra ayuda, intentando resolver el problema. En el artículo que habla acerca de la entrada de tensión de línea en un TV, habíamos visto que esa es una zona muy propensa a romperse por el hecho de estar conectada directamente a la red y recibir, a través de ella, todo lo malo que pueda traer consigo. Los picos de tensión se encontraban entre los principales enemigos de las fuentes de alimentación, pero hay muchos otros que irás descubriendo, analizando y, por supuesto, resolviendo.

 También te habíamos mostrado que la piedra fundamental de una fuente Switching era la conmutación constante que provocaba un transistor sobre un transformador especialmente diseñado para esa función, y que sus resultantes eran aprovechadas para dar energía al TV y para que la fuente pudiera auto-controlarse a sí misma. En un gráfico más completo que el del capítulo anterior, podemos ver las siguientes etapas que comúnmente forman una fuente de alimentación switching clásica, en este caso, la de un monitor a TRC (Tubo de Rayos Catódicos):

Los monitores LCD, TFT o plasma utilizan el mismo principio de funcionamiento básico, con la única diferencia que no traen el circuito de desmagnetización con el PTC. El resto es la misma fuente de alimentación, donde cambian los aspectos físicos de los materiales fundamentales que intervienen en su construcción, pero el funcionamiento y diseño trabajan bajo los mismos principios conceptuales.

Se ve interesante ¿verdad? ¡Espera! No cierres la página ni cambies de artículo. Al final de la nota vas a darte cuenta que todo es muy sencillo y por fin entenderás el funcionamiento de las fuentes de alimentación. El único secreto aquí es que el editor de NeoTeo (un servidor), logre hacer amena y clara la explicación para que no caigas en confusiones que te hagan abandonar la lectura rápidamente. Allí vamos.

¿Cómo es esto de la conmutación?
La conmutación se produce gracias al cambio de estado cíclico y constante de una determinada tensión a la salida del oscilador. Es decir, podemos poner el ejemplo de un voltaje que varíe continuamente entre 0 y 5 Volts. Durante un tiempo controlado, la tensión de activación estará en cero, y en otro tiempo equivalente, estará en cinco volts, y así repitiéndose en el tiempo. Esto significa que está oscilando entre los valores ejemplificados: 0-5-0-5-0-5-0-……

Si en el ejemplo que hemos adoptado realizamos la conexión apropiada a T1, haremos que dicho transistor pase de la saturación (conducción) al corte (abierto), coincidiendo con las variaciones a la salida del oscilador. El transistor estará conmutando entre dos estados bien definidos y opuestos: saturación y corte. Es decir, T1 actuará como una llave (switch) que conecta y desconecta el bobinado primario del transformador, al ritmo que le imponga el oscilador. Un equivalente sería así:

Al provocarse la conducción por el primario del transformador, circulará una corriente importante a través de él, que inducirá otra corriente proporcional en su secundario. Luego ésta será rectificada, filtrada y utilizada por el equipo. Debes recordar que en la entrada del transformador existen 311 Volts de corriente continua y pulsante, apenas filtrada por un electrolítico de 100 a 200 microfaradios, por lo que la corriente circulante por el conjunto primario + transistor será muy importante.

¿Qué ocurre con la potencia disipada, con el calor que esto genera?
Al cerrar la llave, que sería lo mismo que pasar el transistor a un estado de conducción, la diferencia de potencial o tensión, o caída de tensión en sus extremos conectados (Colector y Emisor) será igual a cero, porque se supone que se provoca un estado de conducción plena, sin resistencia interna. Al no haber resistencia al paso de la corriente, no hay caída de tensión presente (V = 0). Según la fórmula utilizada para calcular potencia obtenemos que: P (potencia) = V (tensión) * I (corriente)

Si V = 0, P también será igual a 0. Lo mismo ocurre en el momento del corte del transistor (o llave). Si está abierto, I (la corriente) será igual a cero, por lo que P también resultará igual a cero. Es decir, si el pulso de conmutación es correctamente cuadrado, con flancos ascendentes y descendentes rectos, no debiera haber nunca disipación de calor en el transistor de conmutación.

Los problemas de las fuentes conmutadas comienzan cuando el impulso que gobierna al transistor final de potencia, no logra tener la forma correcta. Si el transistor no pasa del corte a la saturación en un tiempo considerado prácticamente cero o nulo, habrá momentos en que en su interior no habrá resistencia cero, no habrá conducción total. Y si esto no ocurre, tendremos disipación de potencia ya que V no será igual a cero; tendremos generación y acumulación gradual de calor.
A pesar de venir montados sobre generosos disipadores de aluminio para ayudar a irradiar el calor emitido, a veces éstos no alcanzan y los transistores terminan rompiéndose, o los circuitos integrados que los incluyen dejan de funcionar.

Controlando la fuente.
El oscilador principal recibe algunas señales de control muy importantes.

1) La realimentación principal es una referencia de tensión que le brinda un optoacoplador desde la salida en el secundario. Este dispositivo está conectado de manera que toma de la tensión útil de salida una pequeña “muestra”, que será equivalente a la tensión resultante. A veces en el lado primario, a veces en el secundario, se la compara con una referencia fija, y de la diferencia entre ambas surge lo que se conoce como tensión de error. Es con ella que se informa al control del oscilador si el voltaje entregado en el secundario es el correcto o si debe aumentar o disminuir su régimen de trabajo para ajustarse a los valores que la referencia fija le indica. De este modo se genera un lazo cerrado o Loop que continuamente está sensando – comparando – ajustando. Se utiliza un acoplador óptico para este fin, con el objeto de preservar una aislación galvánica a ambos lados del transformador de conmutación o chopper (como también se le suele llamar), manteniendo dos lados bien definidos, separados y aislados: donde hay conexión a la red domiciliaria (lado HOT) y donde no la hay (lado COLD).

2) La segunda señal importante es extraída desde uno de los bobinados del mismo transformador y se utiliza en el control del oscilador para “mantenerlo informado” de posibles consumos anormales de corriente que pudieran haber tanto de un lado como del otro (primario o secundario) y evitar así que el sistema se destruya por altas corrientes de consumo requeridas.

3) Una tercera información que llega al oscilador principal es desde el circuito encargado de sensar la temperatura que el transistor de salida o el circuito integrado en su conjunto posee al momento de trabajar. Una distorsión brusca de temperatura podría desembocar en una rotura total de componentes; esta porción del circuito ayuda a evitar que eso suceda.
Todas estas informaciones llegan al circuito oscilador pero, ¿cómo lo controlan?

Existen dos formas clásicas de hacerlo: una es variando la frecuencia de trabajo del oscilador, y la otra es variándole el ciclo de trabajo a la frecuencia generada por él. En el caso de variar la frecuencia de oscilación, lo que estará sucediendo es que el transistor oficiante de switch conmutará a mayor velocidad, incrementando la tensión en el secundario del transformador chopper. Por otro lado, variar el ciclo de trabajo significa que el oscilador haga variar los tiempos de saturación y corte del transistor. De esta forma se aplica la técnica que se conoce como PWM (Pulse Width Modulation), o su equivalente en castellano: Modulación por Ancho de Pulso. Es decir, hacen durar más tiempo, o menos tiempo, que el transistor esté al corte o a la saturación. Las dos técnicas son empleadas (a veces en simultáneo) para regular la tensión de salida de una fuente conmutada o switching.

¿Has podido entender? ¡Es muy fácil! ¡La fuente tiene un oscilador libre controlado por realimentaciones de circuitos que están atentos en forma permanente a cualquier malfuncionamiento para corregirlo automáticamente o para detenerlo sin que nada se rompa! Pero igual se rompe, y ahora empezarás a ver por qué.

Aplicando la teoría en la reparación.
Para el caso de los Monitores de Ordenadores que utilizan CRT (al igual que en los TV) ya habíamos analizado en el artículo señalado algunas posibilidades iniciales de rotura que, excluyendo a las originadas por el PTC, le caben a cualquier fuente de alimentación. Debes repasarlas para descartar problemas antes de comenzar con esta segunda etapa, más compleja por cierto.

El boom de llenar una casa con electrodomésticos que al momento de diseñarse la instalación eléctrica no estaban previstos ni por asomo, puede traerte serios problemas que no imaginas en absoluto. La sección de los cables que forman la instalación tal vez hayan sido especificados  para una determinada corriente y consumo eléctrico, y ahora tu le has agregado microondas, TV más grande (29” ó 34”), cadena de sonido, más iluminación, secador de cabello, lavarropas automático, lavavajillas, aire acondicionado y, por supuesto, tu ordenador.
Los cables, al no estar preparados para tanto consumo de corriente, provocan caídas de tensiones tan grandes que se notan en la iluminación cuando un electrodoméstico se enciende, provocando altibajos en la tensión de red “dentro del domicilio”. Hay situaciones extremas que llevan a provocar esto:

Una caída brusca de tensión de línea y su posterior intento de recuperación provocan la virtual y literal explosión del capacitor electrolítico de entrada de línea y de la resistencia fusistora (tal es su nombre en la ámbito de los services) de bajo valor, 3,9 Ohms, como se ve en la parte izquierda de la imagen. Este defecto suele a veces ser lo suficientemente grave como para involucrar a alguno de los diodos rectificadores de entrada. Recuerda que debes cambiar los cuatro y no sólo los que encuentres averiados. En el capítulo anterior te hemos enseñado a medirlos.

Los capacitores electrolíticos.
Otro problema grave que poseen las fuentes de alimentación es aquel causado por los capacitores electrolíticos y su exposición al calor. Antes te contamos que en toda fuente de alimentación el diseñador busca obtener los menores valores posibles de radiación de calor, pero la práctica es muy distinta a las frescas hojas de diseño. Los componentes tienen tolerancias que provocan desvíos del funcionamiento ideal, por lo que la temperatura es un actor de importancia y presencia constante dentro del funcionamiento de una fuente, tanto al momento en que se conecta el equipo (y todo está frío) como cuando éste ya lleva un rato de funcionamiento.
El calor va trabajando sin prisa pero sin pausa sobre los capacitores, y termina “secando” el electrolito que impregna el material aislante que se encuentra entre sus placas. El resultado es la pérdida de sus parámetros principales, provocando un malfuncionamiento que generalmente deriva en roturas importantes de la fuente de alimentación.

Por lo tanto, el consejo es que cada cierto periodo prudencial de tiempo controles visualmente los capacitores electrolíticos que intervienen en el funcionamiento de la fuente. Notarás, si los observas bien, que se encuentran con su cubierta plástica arrugada y, en ocasiones, rota. También encontrarás derrame de electrolito sobre la placa en cercanías de muchos capacitores electrolíticos pertenecientes a la fuente. ¿Cuánto es un tiempo prudencial? Cada dos a tres años, no antes ni mucho después.
Cambia todos los del lado primario sin pensarlo ni dudarlo. Ten cuidado con su orientación (polarización o ubicación) y lograrás prolongar la vida del artículo por varios años más. Hay algunos que se ven impecables, como si fueran nuevos. Cámbialos igual. El 60% de los problemas de rotura en una fuente de alimentación son producto de los capacitores electrolíticos que se envejecen o secan prematuramente por motivos de su exposición al calor reinante en el sector. No lo dudes, cámbialos a todos los del lado primario. Ello te garantizará el funcionamiento más parecido al que el diseñador calculó. Ningún otro componente se suele degradar con la temperatura natural del lugar, sólo los capacitores electrolíticos.

A continuación te hablaremos sobre los circuitos integrados utilizados en las fuentes de alimentación y sobre la tecnología que hoy se aplica en los monitores LCD. ¡Sigue leyendo!

La fuente no funciona, pero todo mide y luce como nuevo.
Tal como te explicamos en la parte teórica, la fuente posee realimentaciones que le indican si hay en sus salidas consumos elevados, que pueden ser partes o componentes en cortocircuito directo a GND o tierra. Nunca digas “masa”. En electrónica no existe la masa; existen GND o Tierra, que son términos más apropiados.

Por ejemplo, si alguno de los rectificadores del secundario se ha cortocircuitado, o si el destino de alguna de las salidas se ha derivado a GND por cualquier motivo, las realimentaciones se encargarán de detectar el faltante de alguna tensión y el consumo elevado provocado por esta situación. Ellas actuarán instantáneamente deteniendo el funcionamiento de la fuente y evitando una rotura en el equipo de mayores consecuencias. Una de las acciones típicas es desconectar todas las salidas de tensión del secundario del equipo (en el destino, es decir, luego de los rectificadores y el filtrado) como medida inicial. Luego se conecta el equipo a la red y se controlan las tensiones de salida de la fuente. Si las mismas se hacen presentes, estarás ante una falla que se encuentra más allá de la fuente de alimentación, pudiendo ser alguno de los circuitos de carga los originarios de la “detención” del funcionamiento de la fuente.
Conclusión: tu problema no está en la fuente; búscalo fuera de sus límites.

Circuitos integrados en fuentes de alimentación.
Cuando algún agente externo los hace fallar, el 90% de ellos explotan directamente, rompiendo su encapsulado plástico de forma grosera y con un fogonazo muy visible. Es muy extraño que se deterioren sin evidencias físicas.
Las causales siempre son agentes externos: capacitores electrolíticos secos, variaciones bruscas de la tensión de entrada de línea, realimentaciones que no funcionaron o que también se rompieron en el origen de la falla y no pudieron salvar al circuito integrado. Debemos excluir los casos (cada vez más frecuentes) de un componente falsificado o de baja selección (*), que se sobrecalientan hasta su destrucción. (*) Se les llama componentes de baja selección a aquellos que son de tercera o cuarta categoría de calidad.

Así como el TL494 siempre ha sido el circuito integrado más elegido por los diseñadores para materializar la fuente switching que hace funcionar al ordenador, en los monitores de ordenadores de la última década se ha utilizado generalmente el circuito integrado 3842B o 3842AN. Dado que muchos fabricantes de semiconductores han decidido comercializarlo, este componente ha adoptado la nomenclatura de acuerdo a su constructor. Es decir, podemos encontrar el mismo componente como AMC3842B, CS3842B, KA3842B, KIA3842B, TS3842B y UC3842B, siendo todos los dispositivos enumerados el mismo circuito integrado. También se los suele encontrar con la letra A al final de su nomenclatura. Este IC es un completo controlador SMPS en un solo chip de tan solo 4 pines por lado.

El UC3842 posee un funcionamiento elemental y sencillo como te lo explicamos en la teoría: El bloque fundamental del componente es un oscilador libre ubicado al centro del esquema del IC, cuya frecuencia de trabajo se predefine por el pin 4. Posee además un sensor de sobreconsumo (OCP) que, en este ejemplo, se ubica en el Source de Q1 e informa al IC sobre la corriente de trabajo a través del pin 3. Otro punto importante de observar es la alimentación del IC, que es por pin 7 y que, a su vez, es monitoreada por los pines 2 y 1. Por último, destacamos la presencia de un generador de referencia fija que se hace presente en el pin 8 y es utilizada para predefinir la frecuencia libre del oscilador en el momento de arranque. Estas cuatro señales  – Vref, Oscilador, info de consumo y referencia de tensión – convergen en la simbólica compuerta OR para salir a través del pin 6 y activar la “llave” o “switch” Q1.

Del lado derecho del transformador T1 tenemos las salidas que el diseñador eligió para esta fuente de alimentación. Se puede notar en el esquema que no hay optoacoplador que informe la tensión presente en la salida para que el IC ajuste su régimen de trabajo. Tal como mencionamos antes esta tarea la realizan los pines 2 y 1 del IC que toman la referencia desde la alimentación propia del IC que es generada por T1 una vez iniciado el ciclo de funcionamiento de la fuente.
Una de las múltiples características interesantes de este IC es que puede alcanzar y manejar frecuencias de oscilación de hasta 500Khz, hecho que mejora sustancialmente el rendimiento de la fuente de alimentación diseñada.

En el diagrama superior puedes ver un ejemplo con optoacoplador y el mismo principio de funcionamiento. El opto informa acerca de la tensión de salida, D5 alimenta el IC, a través de R5 se controla el sobreconsumo de corriente, mientras que el oscilador se preestablece por C2 y R3. Y así los esquemas con el 3842B se repiten con pequeñas variantes unos tras otros, pero manteniendo siempre la misma estructura global.

Consejos NeoTeo

  • Cuando cambies un circuito integrado, cambia también al optoacoplador y controla exhaustivamente sus circuitos asociados.
  • Nunca dejes de medir apropiadamente “todos” los diodos y transistores involucrados en el sector. Cualquiera puede estar en cortocircuito o en fuga.
  • Reemplaza los capacitores electrolíticos del lado primario y controla muy bien los utilizados en el secundario de la fuente.
  • Cerciórate que la falla esté verdaderamente presente en la fuente de alimentación y no en su exterior. Cualquier cortocircuito en una de sus salidas, activará el circuito OCP deteniendo su funcionamiento por seguridad.

Fuentes switching en monitores LCD.
Gracias al alto grado de confiabilidad y a la calidad que los fabricantes están brindando a sus semiconductores, las fuentes switching logran obtener rendimientos que rondan el 95%. Es decir, sólo un 5% de la energía extraída de la red se disipa en forma de calor. Esto es muy válido de mencionar ya que las antiguas fuentes lineales no conmutadas (con regulación serie) lograban, en el mejor de los casos, un rendimiento cercano al 40%.

Para su funcionamiento, los actuales monitores LCD también incorporan fuentes switching que funcionan bajo los principios ya enunciados: rectificación de la tensión de línea, filtrado, oscilador, realimentaciones, transformador, rectificación y filtrados finales. Sería muy redundante explicar todo lo mismo para estas fuentes. Quizás los circuitos integrados adoptados en estos nuevos monitores o TV sean otros, pero la estructura de un sistema SMPS es siempre la misma.

En el centro de la imagen se aprecia una fuente switching triple, utilizada en los modernos Monitores/TV LCD. Una parte se utiliza para energizar el panel frontal de LCD, otra para los balastos electrónicos que se ven en columna a la izquierda, y la última para el resto del Monitor/TV donde se adecuan las entradas a seleccionar.

Los balastos electrónicos son para energizar finos y delicados tubos fluorescentes que retro iluminan la pantalla LCD dándole “la luz” a la imagen que el LCD deja pasar o no con su polarización. Si bien son más parecidos a un regulador de luminosidad para lámparas fluorescentes, también trabajan en modo conmutación. Las lámparas fluorescentes de bajo consumo que han llegado para reemplazar a las incandescentes tradicionales de filamento (era hora Thomas, ¿no?) también utilizan el modo conmutado para generar la tensión necesaria de funcionamiento. Y si seguimos buscando encontraremos más aplicaciones de fuentes conmutadas por todos lados.

Como vemos, las fuentes switching se han abierto camino para hacer el trabajo en menor espacio, con mayor eficiencia, siendo más livianas, económicas y silenciosas. Han ganado un lugar y un prestigio que será muy difícil de quitar.

Conclusiones
Ya no acostumbra verse equipos que deban conectarse a la red domiciliaria, funcionando a través de un transformador de entrada de alimentación. La tensión de red se acondiciona y conecta directamente a circuitos de alta eficiencia SMPS dando lugar a fuentes de alimentación livianas, eficientes, sencillas y económicas. No dejes de informarte acerca de ellas, mantén tus conocimientos al día. Estas fuentes alimentan y alimentarán a la electrónica de consumo hoy, y durante mucho tiempo más.

Escrito por Mario

Leave a Reply